compmus_summarise.RdSummarises vector-based features in nested list columns.
compmus_summarise(dat, feature, method = "mean", norm = "id", na.rm = FALSE)
compmus_summarize(dat, feature, method = "mean", norm = "id", na.rm = FALSE)A tibble containing list columns.
The vector-valued column of dat to summarise (unquoted).
A character string indicating which summarisation method to use (see Details). Default is the arithmetic mean.
An optional character string indicating the method for
pre-normalising each vector with compmus_normalise.
Remove NA values?
The following methods are supported.
compmus_summarize: Summarize possibly vector-valued columns
meanarithmetic mean
aitchison,acentre,acenterAitchison centre
rmsroot mean square
maxmaximum
sdstandard deviation
asdstandard deviation of clr-transformed components
sdsqstandard deviation of squares
varrationvariation ratio
library(tidyverse)
get_tidy_audio_analysis("5ZLkc5RY1NM4FtGWEd6HOE") %>%
compmus_align(bars, segments) %>%
select(bars) %>%
unnest(bars) %>%
mutate(
pitches =
map(
segments,
compmus_summarise, pitches,
method = "rms", norm = "euclidean"
)
)
#> # A tibble: 67 × 5
#> start duration confidence segments pitches
#> <dbl> <dbl> <dbl> <list> <list>
#> 1 0.468 3.61 0.237 <tibble [11 × 9]> <dbl [12]>
#> 2 4.08 3.52 0.349 <tibble [9 × 9]> <dbl [12]>
#> 3 7.60 3.53 0.73 <tibble [10 × 9]> <dbl [12]>
#> 4 11.1 3.52 0.785 <tibble [11 × 9]> <dbl [12]>
#> 5 14.7 3.52 0.675 <tibble [11 × 9]> <dbl [12]>
#> 6 18.2 3.53 0.588 <tibble [12 × 9]> <dbl [12]>
#> 7 21.7 3.53 0.503 <tibble [9 × 9]> <dbl [12]>
#> 8 25.2 3.54 0.916 <tibble [13 × 9]> <dbl [12]>
#> 9 28.8 3.53 0.335 <tibble [12 × 9]> <dbl [12]>
#> 10 32.3 3.53 0.598 <tibble [13 × 9]> <dbl [12]>
#> # … with 57 more rows